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Prelude

e |Goal|: When you hear a rumor,

— understand the physics immediately for yourself.

— write a paper within a week.

e Baselines

— 4—dimensional spacetime

'CCM — <t,$,y, Z)a CUM — (t7 —Z, =Y, _Z>

pﬂ — (E7p$7py7pz>7 x,u — <E7 —DPzx» _py7 _pz>
metric : g, = ¢" = diag(1, -1, -1, —1)

2 L T Y 2 2 2
r=2"x, =gt =17 -t —y — =z

— Consider only the physics to be confirmed at colliders.
(Gravitation is not considered in this lecture.)

e |Framework | : Renormalizable relativistic local field theory.

e |Key concepts

— Symmetry

— Mass

e |Basic strategy| : Perturbation theory




Poincaré Group

The Poincaré group is the fundamental spacetime symmetry group of trans-
lations and Lorentz transformations; any physical object that lives in the
Minkowski space of the four dimensional spacetime must belong to some
representations of the Poincaré group.

The Lorentz transformation to the spacetime coordinate x*
" = AP g
leaving the length of the four vector x* invariant as
7’ = g 2" = z°
should satisfy the relation:
G N p N = gpr
The six (anti-symmetric) generators M, of the Lorentz group defined by

; 7
AP, = |exp <—§w”"Mpg)}

satisfy the Lie algebra
My, Myo] =i [guoMup — gupMuo + gupMpus — GuoMyy]
which can be expressed as
[JZ'7 Jj] = +1 €ijk Jk
[Ji, KJ] = +1 €ijk K,
K, Kj| = —ien Ji
in terms of the generators of rotations and boosts

1
Ji = §€¢jijk, K; = My,



The mixed algebra of {J;, K;} can be diagonalized
N7, Nj|=0

;N,j, Ny | = +iein Ny
_Nzﬂ—? NJ—F} = +1 €ijk N]j

by introducing two non—Hermitian generators

1
RZN;—Ei(JZ‘—Z'Ki)

In terms of N~ and N7, we can construct SU(2); xSU(2)x representations
of the Lorentz group

) {N2|<n,m>>=n<n+1>|<n,m>>
N, m)) = m(m 1) (n,m))

The two SU(2) generators are related by Parity P
P

~ P:. N~ & Nf
K¢—>—KZ’

Spinors

Now we introduce 2—component spinors

() v =)=t} = i) -t

0.5) vl = (%)=} = vile) = Annto

2



The generators in the spinor representation are expressed as
1

J; = 502, K, = —éaz

with the Pauli matrices

01 0 —1 1 0 -
o (10),0 (Z O),a (0 _1), o'o! =0, +i€r0

For the rotation of & and the boost of X, the generators are given by

—

AL = exp{—i(j- G+ K- /?5)} = exp {—ig (@ — 'u?;')}

Ql

=
e
I
[©]
X
©
——
A
<~y
&l
|
>N
=1

)} = exp {—15 (W0 + 2/%)}

The magnitude w =

|&J| is the rotation angle while the magnitude of

the boost vector K [which is parallel to the velocity vector 3 ] is called the
rapidity related to the speed 3 as

1
1+g; coshk =, sinhk =~f

e =~(1+8)

Vectors

Polarization vectors of a vector boson in the frame where its momentum is

chosen as 3—-axis can be obtained by boosting the polarization vectors in the
rest frame along the 3-axis:

p"' = (m,0,0,0) boost (E,0,0,p) with E =~m, p=-~8m



e(p,1) = (0,1,0,0) (0,1,0,0) . transverse
e*(p,2) = (0,0,1,0) (0,0,1,0) . transverse
e*(p,3) =(0,0,0,1) boost (E/m,0,0,p/m) : longitudinal

These vectors satisfy
pu”(p,a) =0, eup,a)e(p,b)=—dw; a,b=1,2,3

and the helicity spin—1 states are determined from the above polarization
vectors by

& (p, +) = % F e(p, 1) — i e (p, )

e'(p,0) = ¢"(p, 3)

The contraction of the helicity polarization vectors and ~* is

¢(p, +) = £v2 8 é
00
?/ﬂ:(pa _> - :F\/5 10
- (+(FE) 0
?/ﬂ:(pa O) — 1 %(piE)

The Dirac Equation

For a free particle, the only operator which can appear in the wave equation
is the 4-momentum operator p, = 7 d,, or in the spinor notation

1

Po— P —Prtip
Py O+aa ( ; ’ y)

—Pz — Wy Pot Dz



D O"Iida:( pO"‘Pz px_ipy)
: Pz +1py  Po— P2
One simple wave equation can be a linear differential relation between the
components of spinors, expressed by the operators puaﬂﬁad and puaﬁda

p,u Ufll—aa)_(a — mnOé pu Oﬁaa na — mXOé
where
ol =(1, ¢) ot =(1,-0)

The need to use the mass in the wave equation implies the simultaneous
consideration of two spinors (7, and )Zd); with only one of these, it would
not be possible to construct a relativistically invariant equation containing
a dimensional parameter. The above relativistic wave equation is called the
Dirac equation having been first derived by Dirac in 1928.

The spinor form of the Dirac equation is the most natural one, in the sense
that its relativistic invariance is immediately apparent. In applications of the
equation, however, other forms of the wave equation may be more conve-
nient. We denote a four-component Dirac spinor by the symbol 7). In the
spinor representation, it is a bispinor

Na
X
The Dirac equation is put in terms of the 4—component spinor in the form

puY'Y =g = map

The spinor form of the wave equation with the components of the above
bispinor corresponds to the 4 X 4 matrices y* :

. 0 off
Weyl/Chiral :  +# = (a’i O+ )



We introduce an additional gamma matrix 5 and two chiral projection
operators :

. —1 0 1—|—)\’}/5
%5270717273:( ) 1) P\, = 5 A=+=R/L

In the general case, the matrices v need to satisfy only the conditions
ensuring that p> = m?. To find these conditions, we multiply the Dirac
equation by p

Py Y= %pupy (V"9 + 4"y b = m g = m*y

and we must therefore have

V=207

Free—particle Solutions

Let us solve the Dirac equation. We take into account a plane wave solution

Y(x)=ulp)e ™ pPP=m*@p’ >0 = (y'p,—m)u(p) =0

It is easiest to analyze this equation in the rest frame, where pj = (m,0)
the solution for a general p can then be found by boosting the rest—frame
solution

o =) =m (1 Juto =0 = utw) = v (£

for any 2—-component spinor ¢ normalized to be £7¢ = 1. Now that we have
the general form of u(p) in the rest frame, we can obtain u(p) in any other



frame by boosting. Consider a boost along the 3—direction. Then with the
rapidity x the boosted spinor is given by

(7 ) (§)

1) (7 %)) (g

01 2\ 0 —0o

u(p) = exp

s by
[VEFP(5) + VE=P (7)) ¢
The last line can be simplified to give

u(p) - (WS)
VP-o-¢

where it is understood that in taking the square root of a matrix we take the
positive root of each eigenvalue. This expression for u(p) is not only more
compact, but is also valid for any arbitrary direction of p.

The amplitude of the plane wave contains one arbitrary two—component
quantity . Thus, for a given momentum, there are two different independent
states, corresponding to the two possible values of the spin component. But,
in the relativistic theory the orbital angular momentum [ and the spin §
of a moving particle are not separately conserved. Only the total angular
momentum f: [+ 3is conserved. The component of the spin in any fixed
direction is therefore also not conserved. However, the component of the
spin in the direction of the momentum is conserved ; since [ =7 x p the
product p - § is equal to the conserved product p - ; This quantity is called
the helicity. Helicity states correspond to plane waves in which £ = &, is an



eigenvalue of the operator p - 7:

o-p B B
i Hilp) = A6 A==

If we write
P Ny, Ny, M) = (sin @ cos ¢, sin 6 sin ¢, cos O
y
]
then the normalized helicity eigenstates can be expressed as
£.(p) = 1 [ 14n, cos §
+\P) = 2(1+n,) | na +iny N singewS
£ (p) = 1 [ —n, +in, {—Singew]
a 2(1+n,) | 1 +n, cosg

apart from arbitrary phases. In the helicity basis we can express the Dirac
u—i-(pa )‘>
1475

Pru(p,A) = — “(p’/\>:(U+(ga>‘))

1 —2’75u(p7 A) = ( U—(gv ) )

spinor as

(E —Ap)?&(p)
(E+Ap)'?&:(p)

The subscripts are so chosen as to satisfy

u<p7 >‘) -

P—(p7 )‘> —

In addition to the positive—frequency plane wave solution u(p), there exists
a negative—frequency plane wave solution

Y(z) = v(p) e



satisfying the same Dirac equation. The easiest way to find this solution is
to consider charge conjugation represented by a unitary matrix C'

CyCl=—y, CC'=1 = C=-iy"

v(p, A) = € (p, A) = iv7"]7"w"(p, A) = (Z; _302 ) u(p, A)

which can be derived through the following procedure
(9" 0y —m)p =0
@bT(—i@”y“T—m) =0
yly” (i Oy A"yt — m) =0
_ —
gb(—i@uv“—m) =0
(—z"y“T(f)M — m> Yl =0
(—iCy"TC0, —m) CyT =0

Noting that i 0% 5 = — A&, [\ = £] we can obtain the negative—frequency
solution in the helicity basis as
) ( v_(p, ) )
U+<p, )\>

~(E+p)'/*&5(p)
(E = Ap)'?&5(p)

It is an interesting exercise to check that the helicity spinors U(p, A) and

v(p, A) satisfy the following relations

’L_L<p, A)U(p, )‘,) — +2m5)\)\’ ? U(p, A)ﬂ(p, )‘) :% T m
/D(pa A)”(p7 )‘,) - _2m5/\)\' 2/\:?)<p7 )\>17<p7 )\> :]é —m

v(p, A) = A

We have seen that the necessity of two spinors (7, x) to describe a particle
with spin 1/2 is due to the mass of the particle. This necessity disappears if



the mass is zero. The wave equation which describes such a particle can be
derived from a single spinor, say the undotted spinor

pua’idana:O = (E+p-d)n=0

The energy and momentum of a particle with m = 0 are related by ' = |p]
so that we have

(p-d)n(p) = —n(p) : helicity A = —1

On the other hand the dotted spinor Y satisfies

(p-d)x(p) = —x(p) : helicity A = +1

Consequently, states of the massless particle with a definite momentum are
necessarily helicity states, for which the spin component in the direction of
motion has a definite value. If the particle spin is opposite to the momentum
(helicity —1/2), the antiparticle spin is along the momentum (helicity +1/2).
The neutrinos in the Standard Model are such particles possessing these
properties.

2—component Spinor Technique

For the contraction of a four—vector a* and v we write

(0 gy _
(0 %) oo

For the Pauli-adjoint of the four—-component spinors we have
a(p, A) = u'(p, \)y° = (ul(p, A), ul (p, V)
o(p, ) = v'(p, A" = (v].(p, X), 01 (p, V)



Hence strings with even and odd numbers of y—matrices are expressed,
respectively,

a(p, ) Pru(p, ) = ul (p, \us(p, \)
ﬂ(ﬁ, 5‘) Q{Piu(pv )‘> - u]Li( ) diui(pv )‘>
”L_L(ﬁ, 5‘) W/PiU(Pa )‘> — u;( ) ¢3F Viui@?v )‘)

and the similar relations hold for strings with v's and with u and v.

An Example

As a first example, let us calculate the helicity amplitude for the process
e (k,0) +e"(k,G) = p(p, A) + u (B, A)

in the lowest order. We choose the e~ momentum direction as the positive
z-axis and assume that the muon pair is produced on the x-z plane with the
[t~ scattering angle 6:

k:§(1,0,0,+1) k= ‘{(1 0,0, —1)

pz?(l,siné’,(),ﬁcosé’) D= —(1 —sinf,0, —( cos 0)

g=k+k=p+p s=¢ 5:\/1—4”12/5

where m is the muon mass and the electron mass is neglected. In this

g

coordinate system the electron and muon 2-component spinors are given by

_ /4 1 Y 14 0
u(k,+)q = 64+8 0 ) w(k, =)o = 04_8 1
U(]_C, _)a — 5a+31/4 _01 ) U(Zﬁ, +>a - 6&—31/4 _Bl




Sh
u(P, —)b — W-p ( o )
Ch
s
v(p, —)p = —bwy ( _zh )
R A R R
v(p, +)p = bw_p ( 5 ) Ch=COS5  sp=sing

The scattering amplitude due to the v and Z exchanges is written as

M(cd : A\ = %QQab [0(k,5)y,Pou(k, o)] [a(p, \)y" Pyo(p, N)]

S
=1+ : al al)
Qu s—m%+imgly; ° b
f_T;—QfSiHQHW QfSiIlQ@W
ar = ; - ;
cos Oy sin Oy cos Oy sin Oy

=

It is quite straightforward to evaluate the electron current (although you need
to do a little exercise to get familiar with the technique)

i (oa) = v(k,a)y"Piu(k,o) = v(k,o) o’ u(k, o),

= 8,1 05./5(0,—1,—1,0)



== 50_ 55+\/§ <O, —1, +Z, O)
= —0p— 05+ V2s€'(q, —)

Note that the positron helicity is always opposite to the electron helicity.
On the other hand, it is a little demanding to evaluate the muon current:

J_’i(—i—, —> = ﬂ(p, +>’>/MP+U(]37 —) = —wi(ch, Sh) [1, O_"] ( _Szh )

— ﬁ(l + 6) (0, — cos 8, i,sin 0)

2

Ji(=,4) = a(p, =)7"P-v(p,+) = —wi(=sn, cn) [1, =7 ( —Czh)
- \/;(1%) (0, —cos 9, —i,sin )

Ji(++) = alp, )y Prv(p, +) = wrw-(en, sp) [1, 0] (z};)

= m(1,sin6,0, cos )
Jﬁ<_7 _) = T_L(p7 —)”}/’uP_’U(ﬁ, _) — w_w+(—3h, Ch) [17 _5:] ( —Szh )
= m(—1,sin60,0,cosf)

With these expressions we obtain the helicity amplitudes:

2
_ e ) B _
M(oa : A\) = gQab Ja(0,7) - Jp(A,N)

(+:4+) = ™ sing

NG

(+:4+—) = %(1 + )(—1 — cos 0)



(+:—+) = %(1 +B)(+1 = cos0)
(4 ——) :%sine
(— 44 :%sin@
(=) = 51+ A1~ cosb)
(= —+) :%(Hﬁ)(—l—cos@)
()= %sin@

At high energies the amplitude is greatly simplified because of chirality
conservation

M(o,—0 : X, —)A) == —€°Q,» (o) + cos )

List of Possible Renormalizable Interactions

Spin 0 1/2 1
1 Gauge Gauge Gauge
[Duel? | W DY | FME,
1/2 | Yukawa No No
Y
0 Scalar No No
0° o




Gauge Interactions

e Obtained by the replacement
Op = D,=0,+1igT"A]

e Universality : there is only one coupling constant for each simple group.
The gauge interaction of a particle is totally determined by knowing the
representation of the particle.

e Conserves fermion chirality
&/Vu(v - a’75) Y7 = [(U + a)&L’Yu Y1, + (U - a)@ER%L wRZ] zZ"

Breaking of fermion chirality is entirely due to a mass term or a Yukawa
interaction [apart from anomalies].

e Non-renormalizable effective interaction of gauge bosons can be con-
structed from D, and F},, such as

ﬁawa“” QZVMD,ﬂbFW

Prescription of Model Building

e Fix the gauge group

— Gauge bosons are determined

— Parameters : gauge couplings
e Fix the representations of fermions and scalars

— Gauge interactions of matter particles are fixed (no new parameters)



— The total fermion representation must be anomaly—free
e Give global symmetries if needed

e Write down all possible mass terms and interactions compatible with the
symmetries
— Parameters

* scalar potential parameters (2, 3, ©?)
* fermion masses and Yukawa couplings

From Lagrangian to Cross Section

e Particle states in the Hilbert space

— The vacuum

(0|0) =1 |0) :dim =0

— One—particle state

(p|p') = 20°(2m)30% (5 — p)) p) : dim = —1
~ dp
1:|0><0|+%|p><p|+“° %:_W

e Quantum fields

%0(1’) = %: [a(p) e~ + aT(p) eip-:v}

Yle) = ¥ ) ax(p)u(p, A) e " + bl (p)v(p, A) e
At = 5 % an(p) e'(p, ) e + al(p) € (p, ) €]
P A=+,0



e S matrix

Spi = (foutliin) =1+ (2m)* 04 Py — P) Ty
Unitarity : SST = S1S=1 = T'T=—i(T-T")

Lagrangian to Feynman Rule

e Free parts (or kinetic terms) = Propagators; Interactions = Vertices

P —
2 ¥
P —

V g 0
k —

Massless :

kyk
gt
(4

k%2 —m?2+ie

Joyk
gt (l—a)= 5"

¢ k2 +ie

. Feynman gauge

: Landau gauge



e Vertices : from ¢ L

— No derivatives

L =1 175000

¢1

""""" r i fs ==
¢2

L= —epryp A

(3

---------- Ay i (=€)t = —iey,
(03

L= pp® =64 (5°)

®

__________ © 1-6p =06



— With derivatives

L= —ie(p"0up — Oup™ 0) A

LN »
o\ S0>I< ~ e-l—zp-x
P
T owwds (i) [(ipa) — (k)
p / —ipT
/ ~ e .
P =—ie(p+p)a
L=—ies WW, (0" g™ — 0"g") A,
W+
—q
Aa i (—iek)|[(—iqu)gva — (—1Gv)Gpal
~ e—iq-x
W = —tek(¢ugva = Gv Jua)
1

Feynman Rules to Scattering Amplitude

A Feynman graph is a sum of all possible graphs for a given process using
the vertices and propagators of the model.

e Vertex — vertex factor



e Internal line — Propagator
4
e Loop — J %
e External line — wave function

—scalar: 1

— fermion :
particle ulp) —O
e initial
antiparticle v(p) ——QO)
particle ulp) O—r—
e final
antiparticle v(p)  (O——
— vector :

e initial €,(p) final €,(p)

e Closed fermion loop — factor (—1)

e A graph with an exchanged fermion pair — factor (—1)

Following the above prescription one can obtain i7y; = ¢M where M is
called the scattering or transition amplitude.

Scattering Amplitude to Cross Section/Width

e Decay rate (in the rest frame)

1 _
dl'(p = k1 +--- + k) ZWZM/HQdCDn



e Scattering cross section
1

N 2\/(]?1 - p2)® — M¢ M3

where ¥ denotes the average for the initial states and the sum for the

do(py +py — ki +---+ k) > |IM2dd,

final states.

e Final-state phase space

II

) L d3k2
i=1 (2m)32kY

b, — (2m)*5* (p— Sk

=1

The evaluation of the phase space integrals is facilitated by the identity

d3k;
2K

You are recommended to derive the 2—body phase space

= d'p; 8(k; — m;) 0(ky)

Br . 22
dq)g = 3271’2 S111 91d91d¢1 ﬁf =

s* = 2(mi + my)s + (mi —mj)*

g2




Standard Model




Quantum Chromodynamics

Hadrons — baryons and mesons — are bound states of quarks and gluons.






e | Asymptotic freedom| : the effective coupling vanishes at high energies
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